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Abstract

We present a numerical and analytic assessment of the transport in two

quasi{axially symmetric stellarators, including one variant of the MHH2

class[1] of such devices, and a con�guration we refer to as NHH2, closely

related to MHH2. Monte Carlo simulation results are compared with ex-

pectations from established stellarator neoclassical theory, and with some

empirical stellarator scalings, used as an estimate of the turbulent transport

which might be expected. From the standpoint of transport, these may be

viewed as either tokamaks with large (� � 1%) but low{n ripple, or as stel-

larators with small ripple. For NHH2, numerical results are reasonably well

explained by analytic neoclassical theory. MHH2 adheres less to assump-

tions made in most analytic theory, and its numerical results agree less well

with theory than those for NHH2. However, for both, the non{axisymmetric

contribution to the heat 
ux is comparable with the symmetric neoclassi-

cal contribution, and also falls into the range of the expected anomalous
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(turbulent) contribution. Thus, it appears e�ort to further optimize the

thermal transport beyond the particular incarnations studied here would

be of at most modest utility. However, the favorable thermal con�nement

relies heavily on the radial electric �eld. Thus, the present con�gurations

will have a loss cone for trapped energetic ions, so that further optimization

may be indicated for large devices of this type.
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1. Introduction

This work describes an assessment of the con�nement characteristics of

two related stellarators having quasi{axial (QA) symmetry . We present

results for one variant of the MHH2 concept[1] | a 2{period (N = 2) mod-

ular QA stellarator, and a second system we refer to as NHH2, obtained

from the MHH2 description, but modi�ed in a simple manner (to be de-

scribed shortly) which makes it conform better to usual assumptions made

in existing stellarator transport theory, and therefore permits us to carry

the analytic development further. The principal objective of such magnetic

con�gurations is transport optimization, in this case by eliminating nonax-

isymmetric components of the magnetic �eld strength B( ; �; �) in Boozer

coordinates, i.e., those harmonics with n 6= 0 in the decomposition

B( ; �; �) =
X
m;n

Bmn( ) cos(n� �m�): (1)

Then the residual neoclassical transport is as in a tokamak. If the ideal of

this con�guration could be achieved, it would have the transport advantages

of the equivalent tokamak, while retaining the stellarator virtues of need-

ing no internal current to provide its rotational transform �( ) � q�1( ),

steady{state operation without current drive, and being more resistant to

disruptions.

The particular variant of MHH2 studied here is an Nc = 16 coil design,

with major radius R0 = 3m, average minor radius a = :66m, hence inverse

apsect ratio �a � a=R0 = 1=4:5, and average magnetic �eld on axis B0 = 2

T. The shape of the outermost 
ux surface was speci�ed by P. Garabedian,

and the magnetic �elds computed[2] using the VMEC code.[3] Thus, the

ripple from the discreteness of the �eld coils is neglected in this study, and is
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expected not to produce appreciable transport except near the edge. NHH2

is a mathematical construct, having �elds and other parameters precisely

the same as in MHH2, but with the sign of m reversed in each Bmn.

As desired, the average residual ripple strength � in these systems is small

in comparison with that typical of stellarators, which have � � � � r=R0, but

is appreciable in comparison with that from coil disceteness in realistic toka-

maks. Since large ripple (� � 1%) can also be problematic in tokamaks, it is

not a priori clear that the systems considered here will have acceptably low

neoclassical transport. Additionally, the n{value associated with the ripple

here is about an order of magnitude lower than that normally envisioned

for rippled tokamaks. Thus, MHH2 and NHH2 have features which are not

strictly in accord with the assumptions made in existing transport theory for

both stellarators and tokamaks. One result of this work is to provide some

calibration of that theory with the MHH2 design. Especially important in

these theories is a separation in length scales between the toroidal connec-

tion length Lt � qR0 and the length Lr � Lt=jnq �mj across a ripple well.
The reversal of poloidal mode number m in the Bmn's makes this separation

better for NHH2. Thus one expects, and �nds numerically, that transport

in NHH2 should adhere better with existing theory than that in MHH2.

The remainder of the paper is organized as follows. In Sec. 2 we de-

scribe the character of the �elds and particle orbits in them, and brie
y

review the theoretical transport results to which our numerical results will

be compared. In Sec. 3 we present the numerical results, transport coef-

�cients obtained from Monte Carlo (MC) simulations done with GC3, a

guiding{center (GC) code in Boozer coordinates, and compare these with

the analytical results already introduced. The ensembles used in the MC
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runs are for monoenergetic particle distributions, in order to obtain adequate

statistics for ensembles of modest size. The approximate agreement between

the analytic and numerical results for NHH2 shown in Sec. 3 permits us in

Sec. 4 to perform a theory{based extension of the monoenergetic results to

the `energy{averaged' expressions applicable to a local Maxwellian distri-

bution fM , for the transport coe�cients, particle and energy 
uxes, and

associated con�nement times.

The ion 
uxes depend sensitively on the radial electric �eld Er ' �@r�
[with �(r or  ) the ambipolar potential and r � (2 =B0)

1=2 a 
ux function

with units of length, representing the average minor radius], and these ana-

lytic expressions for the 
uxes put us in a position to determine those values

of Er which satisfy the ambipolarity constraint

0 =
X
s

Zs�1s; (2)

where s is a species label, Zs � es=e0 is the charge number for species s,

e0 is the proton charge, and �1s is the particle 
ux for species s. Here, we

as usual consider a 2{species plasma, electrons and a single ion species. As

found over a decade ago[4, 5], for some parameters multiple roots of Eq.(2)

can exist, of which two are stable to 
uctuations in Er. One, the `ion root,'

in which ions are held in by the electrons, is the one originally[6] and more

commonly considered. At the second, `electron root', the electrons are held

in by the ions, and the particle and heat 
uxes can be substantially reduced

from those in the ion root. Here we show that the version of NHH2 studied

here should be able to access this root. MHH2 is expected to display qualita-

tively similar behavior. Further reduction of nonaxisymmetric neoclassical

transport is useful only when it is larger than the rates of both symmetric
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neoclassical and turbulent transport. Thus, in Sec. 5 we present some sum-

marizing discussion of the results of earlier sections, including a comparison

of the transport rates for these three mechanisms, with the turbulent rate

estimated from some common empirical stellarator con�nement scalings.

2. Fields, Orbits, and Existing Theory

In Figs. 1 we plotB(x) along a �eld line for one poloidal transit for MHH2

(1a) and NHH2 (1b) on the 
ux surface r = a=2. As noted in Sec. 1, one

sees that the ripple amplitude � is smaller than the slower toroidal variation

(� �). One notes that while MHH2 and NHH2 have precisely the same

ripple amplitudes Bmn, the smaller Lr for NHH2 noted in Sec. 1 makes

its ripple wells much better de�ned and deeper than for MHH2. Absent

in Fig. 1 and throughout this paper are those higher{n Bmn representing

the discrete nature of the �eld coils, which are not computed by the �xed{

boundary VMEC calculations used here, and which should fall o� rapidly as

one moves inward in r from the coils. Additionally, the remaining hundreds

of harmonics which are produced by VMEC are ranked by size, and only the

largest Nh are kept. In Fig. 1 Nh = 10 harmonics are kept, which appears

to capture most of the essential physics for the GC motion. Henceforth, it

is convenient to denote the (m;n){pairs by (m; ~n � n=N). The (m; ~n) s of

NHH2's largest harmonics in descending order (those for MHH2 obtained

simply by taking m ! �m as noted earlier) are then (0,0), (1,0), (2,-2),

(2,0),... and the tenth largest (1,1). Bm~n = B00 � B0;0 gives the 
ux{surface

averaged �eld, B1;0=B00jr=a ' �:127 yields the dominant �� cos � toroidal
component of B, and B2;�2=B00 ' �:028 is the largest nonaxisymmetric
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contribution. The smallest Bm~n = B1;1 kept there is down by about 2

orders of magnitude from B0;0, and a factor of 4 from B2;�2.

The general features of orbits in these �elds are as envisioned in the

established literature on particle motion and neoclassical transport in stel-

larators. In Figs. 2 and 3 we show poloidal projections of some collision-

less orbits representative of those dominantly contributing to neoclassical

transport in NHH2, for three values of the ambipolar �eld, given by the

dimensionless variables �̂ � R0eiEr=E� or � � aeiEr=Ti (with E� = 3:5

MeV the alpha birth energy, and Ti the ion temperature, which we take as

3.5 keV= E�=10
3.): (a)�̂ = �:01 (� = �2:2), (b)�̂ = 0 (� = 0), (c)�̂ = :01

(� = 2:2). All are launched with kinetic energy K = 2T = 7 keV at

� = 0 = � and at small pitch � � vk=v. Those in Fig. 2 have � = 0 and an

initial phase which makes them ripple trapped, while those in Fig. 3 have

� = :2, which are toroidally trapped, like normal tokamak bananas.

For Er = 0, trapped particles [Fig. 2(b)] drift directly out of the ma-

chine. For nonzero Er, these `superbanana' orbits acquire a poloidal drift

which for � � 1 is large enough that the superbananas are well con�ned.

While particles initially ripple trapped sometimes remain trapped for the

entire poloidal transit [Fig. 2(c)], a more common situation is illustrated by

Fig. 2(a), where a particle initially ripple trapped can make successive colli-

sionless transitions from and back to that trapping state. Analytic theory of

this process[7, 8] assumes that su�cient symmetry in B(x) exists that the

collisionless superbananas approximately close on themselves. This charac-

teristic is only roughly satis�ed for NHH2, so that one might expect existing

theory to capture much of the transport physics here, though not all. Owing

to the larger Lr, collisionless orbits in MHH2 display less symmetry, with
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collisionless de{ and re{trapping being more frequent and less regular.

The orbits in Figs. 3 are tokamak{type bananas. Due to the ripple per-

turbations (n 6= 0), these bananas drift radially. Er a�ects the size of the

bananas, as visible in Fig. 3, as well as the toroidal precession rate, and

thereby the size of the radial excursion these drifting bananas make, giving

theEr{dependence in the \banana{drift branch" (b = bd) of transport.[9, 10]

In the absence of the n 6= 0 harmonics, bananas close on themselves, pro-

ducing the standard axisymmetric transport (b = sym) of an ideal tokamak.

Finally, the ripple trapped particles illustrated in Fig. 2 produce the \su-

perbanana branch" (b = sb) of transport. The transport coe�cients Db for

each of these 3 branches b = sym; bd; sb are plotted in Fig. 4 for the present

MHH2 parameters. As a rough but standard approximation, to estimate the

total transport expected from a system in which all three transport mech-

anisms are operative, we shall take the sum of the contributions from the

three individual branches.

Each Db has various collisionality regimes, denoted by the subscripts.

Dsym has the familiar banana, plateau, and P�rsch{Schl�uter regimes (the

last beginning at higher central electron density ne0 than the range shown in

Fig. 4) D
sym
bn;pl;ps, scaling with collision frequency � / ne0 as D

sym
bn;ps � � and

D
sym
pl � �0. Dbd has the less and more collisional banana{drift regimes[9]

Dbd
1E;�1, scaling with � and poloidal E � B precession frequency 
E / � as

�1=
2
E and ��1
0

E, and the still more collisional ripple{plateau regime[10]

Dbd � �0
0

E . D
sb has the least collisional \superbanana regime"[7, 8]Dsb

1E �
�1=
2

E where trapping and detrapping e�ects are signi�cant, an intermediate

\�1=2 regime"[6] Dsb
1=2 � �1=2=


3=2
E whose width in � or density vanishes for

� < �, as here, and the \1=� regime" Dsb
�1 � ��1
0

E , probably the most
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commonly used expression for stellarator ripple transport. The expressions

plotted in Fig. 4 are only the asymptotic forms valid in each collisionality

regime; a fuller treatment would round o� the abrupt transitions which

appear in Fig. 4. A second rounding e�ect occurs when the monoenergetic

results plotted here are averaged over a Maxwellian distribution, as will be

done in Sec. 4.

3. Numerical Results

As noted in Sec. 1, the numerical transport coe�cients D presented in

this section were computed from MC simulations using GC3, a GC code in

Boozer coordinates, using numerical equilibria generated using VMEC and

translated to Boozer coordinates using the JMC code.[2] GC3 uses a Lorentz

collision operator, and each value of D was computed from a monoenergetic

ensemble of 352 particles launched at r=a = :5, with x � K=T = 2, and

evenly distributed in initial values of �; �, and �. D is calculated from the

Fokker{Planck form

D = h(�r)2=(2�)i; (3)

where h: : :i is an ensemble average, �r(�) � r(�) � hri, and � is the orbit

run time. To yield a genuine di�usion coe�cient, � must be longer than a

radial decorrelation time, indicated by a transition to a behavior h(�r)2i � �

in a plot of h(�r)2i versus � as � becomes long enough. This is satis�ed for

most of the numerical results shown here. However, for small � and at

low collisionality, trapped ions can walk nondi�usively out of the machine.

When a particle escapes, � is given by the run time for that particle, and

r(�) in �r is given by a. When most particles contributing to the transport
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have nondi�usive motion, D in Eq.(3) no longer has a strict interpretation as

a di�usion coe�cient, but still is an average reciprocal con�nement time[11]

(times a constant), and so is still a good measure of the con�nement quality

of the machine.

In Fig. 5 are shown numerical and analytic transport coe�cients for

NHH2 versus density ne0 (or �), for �̂ = 0. The 4 curves with symbols

are numerical results, and the 4 heavier curves without symbols are analytic

ones. The 3 lower analytic curves show each of the 3 transport branches, and

the top curve is their sum. The curve with diamond symbols shows MC re-

sults taking Nh = 2, i.e., taking only the two largest harmonics (0,0)+(1,0),

thus simulating the ideal tokamak nearest to the full MHH2 system. This

latter is approximated by the curve labeled Nh = 10 (star symbols). First

comparing the Nh = 2 curve with Dsym , one notes approximate agreement

between the numerical di�usion and the axisymmetric neoclassical predic-

tion. Additionally, comparing theNh = 10 `full' results with the total (solid)

analytic curve, one again notes rough agreement. As ne0 ! 0, the analytic

curves become in�nite, with the onset of the 1=� regime, while of course the

numerical results remain �nite, and represent transport which is no longer

di�usive. As already noted, the NHH2 �elds do not fully satisfy assumptions

made in the original stellarator theories yielding the analytic expectations

plotted here, and thus the approximate agreement in Fig. 5 is as good as

one might expect.

Two other MC curves appear in Fig. 5, the results of two truncations of

the full �elds to test the contribution to the transport of particular Bm~ns.

The curve labeled Nh = 3 (rectangular symbols) shows the transport from

keeping only the largest n 6= 0 harmonic (2,-2) in addition to the two
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(0,0)+(1,0) kept for the Nh = 2{truncation. One sees that the (2,-2) alone

accounts for about half the ripple transport of the full Nh = 10 system.

The curve labeled Nh = 4 (triangular symbols) gives the results of keeping

only the (0,1)+(0,-1) harmonics in addition to the (0,0)+(1,0) axisymmet-

ric ones. These yield a mirroring �eld which can be problematic for some

stellarator con�gurations[12]. For the present case, however, one sees the

transport contribution from this mirroring perturbation is rather small.

Fig. 6 shows a sweep of MC results versus �̂ at ne0 = 3� 1013=cm3, for

the full Nh = 10 and axisymmetric Nh = 2 cases. For simplicity, the value

for the ripple{strength � required for the analytic curves is computed using

only the largest contributor B2;�2. This makes the width of the analytic

peaks around �̂ or 
E = 0 broader for both Dbd and Dsb than one actually

expects as both mechanisms make the transition from their 1=� to their

�=
2
E behavior, and one sees the the Nh = 10 numerical results do indeed

have the peaked form of the analytic curves, but fall o� somewhat faster

with �̂.

In Fig. 7 we compare the simulation results for NHH2 already discussed

with those for MHH2. One notes that while being of comparable size, the

scaling of D with ne0 is somewhat di�erent for MHH2, and is not as close to

the analytic prediction. Again, in general terms, this is expected, because

of the closer adherence in NHH2 of the spatial separation Lt=Lr � 1. And

qualitatively, the lower transport levels for low ne0 is probably due to the

more prevalent collisionless detrapping enhancing the e�ective collision fre-

quency in this regime. However, a fuller understanding of the transport scal-

ing in MHH2 probably requires a theory di�erent from the traditional ones

considered so far. Some work has been done[13] generalizing the banana{
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drift branch to perturbations which, like those here, have low{n and m 6= 0.

Whether theory along these lines can clarify the MHH2 results in Fig. 7

is under study. For the present, however, both analytic and numerical in-

dications are that one may take the more complete results given here for

NHH2 as an estimate of the transport levels and scalings one may expect

for MHH2.

4. Energy Averaging and Ambipolar Potential

We have seen that existing analytic theory for stellarator transport pro-

vides an approximate understanding of the monoenergetic simulation results

for NHH2, though that con�guration is somewhat di�erent from the more

`classical' stellarators for which the theory was �rst developed. On this ba-

sis, we analytically develop an expectation for the 
uxes one may expect

from a local Maxwellian distribution fM , and from these expressions, which

depend on the ambipolar electric �eld Er, obtain a solution for the expected

ambipolar �eld and predictions for the particle and heat 
uxes in the pres-

ence of that Er. The general procedure is like that used earlier[6, 4], but

includes the two transport branches b = sym; bd in addition to the sb{branch

considered in that earlier work.

For any function g(x � K=T ) of the kinetic energy, the radial 
ux of g

for species s due to transport branch b is given by


bgs � �bgs=(ns0a) � �
Z
dvg(x)Db

s(x)@rfMs=(ns0a); (4)

where the normalized 
ux 
bgs is de�ned to have units of inverse time, so

that the con�nement time �g for g is approximately given by 1=(4
g). D
b
s(x)
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is the monoenergetic di�usion coe�cient examined in Sec. 3. Specializing g

to xr, for any power r, one may perform the velocity integration, �nding[4]


xr =
2

a2
p
�
f �Db

s(r)[(a�n) + �s � 3

2
(a�T )] + �Db

s(r+ 1)(a�T )g; (5)

where �n � �@r lnn0; �T � �@r lnT , �s � aesEr=Ts, and

�Db(r) �PqD
b
q(x = 1)I(x; 1

2
+mq+ r)j+� is Db(x) averaged over energy, and

hence over successive collisionality regimes q. The energy integral is given

by the incomplete Gamma function �(n + 1; x) � I(x; n) � R x dx1xn1e�x1 ,
and the limits j+� denote those values x� at which the collisionality regime

q of the transport mechanism changes. As mentioned in Sec. 2, the e�ect

of performing this integration is to smooth the abrupt transitions in the

transport coe�cients plotted in Fig. 4. From Eqs. 4 or 5, the normalized

particle 
ux is 
1 (i.e., r = 0), and the heat 
ux is 
x (i.e., r = 1).

The symmetric contributions 
sym to the particle 
uxes are intrinsically

ambipolar, and thus do not play a role in determining Er. Thus, in Fig. 8

are plotted the nonaxisymmetric portions 
na = 
bd+ 
sb of 
 versus �̂, for

both ions and electrons, along with the constituent parts 
bd and 
sb. The

point �̂1 ' �:01 at which 
na1i = 
na1e is a self{consistent solution for Er at

the single radius r0 = a=2 for which this calculation has been carried out.

�̂ = �̂1 < 0 is the `ion root' more commonly considered. For the present

parameter choice, the second `electron root' �̂2 > 0 of the ambipolarity

constraint (2) does not occur, essentially because the ion 
ux or di�usion

coe�cient does not fall o� rapidly enough above �̂ = 0 to drop below the

slowly declining electron 
ux 
1e before it falls below 0 due to �e in Eq.(5).

Plotting the full energy 
uxes 
xs versus �̂, and superposing the value

�̂ = �̂1 established from Fig. 8, in Fig. 9 one reads o� the expected ion and
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electron heat 
uxes for that case, and from this in Fig. 10 the predicted

neoclassical ion and electron energy con�nement times �Es � �xs; (s = i; e);

�nding �Ei ' 44ms, and �Ee ' 68ms.

The width of the peak in 
nai is proportional to collisionality. Thus, one

way of accessing the electron root for this system would be to operate at

lower density (or higher temperature). (A more precise criterion is given in

Ref. 4.) This is illustrated in Fig. 11, where the density is lowered by a factor

of 3, to ne0 = 1013. Now the electron root does appear, at �̂2 ' :03, while

the ion root is at �̂1 ' �:004. One notes the property of �̂2 making it most

interesting: While at �̂1 the 
uxes are 
na1 ' 1:9=sec; 
naxi ' 12:0=sec, and


naxe ' 3:5=sec, at �̂2 these are substantially reduced: 
na1 ' :26=sec; 
naxi '
1:6=sec, and 
naxe ' 1:6=sec.

5. Discussion

The NHH2 system employed in this work provides a bridge between

MHH2, which is the con�guration of principal interest, for which adequate

analytic theory does not yet exist, and the more idealized existing analytic

theory. It is noteworthy that 2 systems having identical descriptions ex-

cept for the mapping m ! �m which distinguishes them, can have rather

di�erent transport scalings. However, we have also found that the overall

transport levels from the 2 systems are similar, so that our more detailed

understanding of NHH2's transport can be used to estimate that for MHH2.

Tailoring the harmonic content of the Bm~ns to further reduce 

na might

be worthwhile for MHH2 if 
na were large enough to dominate the sym-

metric neoclassical contribution 
sym as well as the anomalous (turbulent)

14



contribution 
an. To estimate the last of these, here we evaluate some com-

mon empirical stellarator scaling laws. However, it should be kept in mind

that, as recent tokamak experiments with transport barriers show, turbu-

lent transport is also a mechanism which may be amenable to substantial

reduction.

The nonaxisymmetric neoclassical contributions 
na to the 
uxes are

comparable to the symmetric ones, and for NHH2 
na is dominated by


sb. At the ambipolarity solution �̂ = �̂1, for example, one �nds 

sym
xi '

2:93; 
sbxi ' 2:23; 
bdxi ' 0:24. Most ions are in the ripple{plateau regime of


bd, which has an n{scaling Dbd
rp � n. Thus, since for the present system

n � 4 is small compared with that (n � 20) producing TF ripple in a normal

tokamak, 
bd is smaller by about a factor of 5 than its value for a normal

tokamak with comparable ripple, making the banana{drift contribution sub-

dominant.

Turning to the comparison of 
na with 
an, we evaluate the con�ne-

ment expected from the Lackner{Gottardi[14] and International Stellarator

Scaling[15] expressions. As in Ref. 15, the units here are MKS, except for

line{averaged density �n19, which is in units of 1019=m3 = 1013=cm3, heating

power PMW , which is in MW, and TeV , which is in eV.

�LGE = 0:17Ra2�n:619B
:8q�:4P�:6MW (6)

� ISS95E = :079R:65a2:21�n:5119 B
:83q�:4P�:59MW : (7)

Combining either of these with the power balance relation

�E ' 2�2Ra2�nT=P ' (:316� 10�4)�n19TeV =PMW (8)
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yields a relation for �E as a function of R; a; B; q, and �n19. For �n19 = 3, one

�nds �LGE ' 522msec, while � ISS95E ' 21msec, with �LGE independent of �n19,

and � ISS95E only weakly dependent on �n19.

Thus, if � ISS95E is assumed an accurate measure of turbulent transport,

that transport dominates the neoclassical transport computed earlier, and

further transport optimization from the con�gurations studied here would

be of no use. On the other hand, if �LGE is taken as proper measure, then

the transport would be neoclassically dominated. However, since 

sym
xi �


naxi , as noted above, even complete elimination of 
na would only result in

modest gains in the total �Ei. Thus, further e�ort at optimization of thermal

transport from the con�guration adopted here seems of limited utility.

While thermal transport is thus acceptably low in the present con�gu-

rations, it is strongly dependent on the radial �eld Er for being so, with


xi reduced a factor of � 8 from its �̂ = 0{value at the operating point �̂1.

Thus, these systems will have a loss region for energetic ions. The existence

of this loss channel has sometimes been regarded as a virtue,[16] providing

a built{in means of alpha ash removal in return for a tolerable level of loss.

If the loss rate is judged excessive, however, little optimization has been

attempted on the con�guration, and it seems likely that the loss could be

further reduced with additional e�ort at tailoring the magnetics.
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Figures

Fig. 1. Plot of magnetic �eld strength B(x) along B for one poloidal transit

at r = a=2 in (1a) MHH2, (1b)NHH2.

Fig. 2. Collisionless GC orbits launched with � = 0; � = 0 = �, kinetic

energy K = 7 keV, and for 3 values of the ambipolar �eld (a)�̂ = �:01,
(b)�̂ = 0, and (c)�̂ = :01.

Fig. 3. As Fig. 2, but with initial � = 0:2.

Fig. 4. Analytic predictions for transport coe�cients Db for each of the

three operative transport branches b = sym; bd; sb, for j�̂j = :002 and a

monoenergetic distribution with x � K=T = 2, or x̂ � K=E� = :002.

Fig. 5. Numerical (curves with symbols) and analytic (heavier curves with-

out symbols) transport results versus ne0 for �̂ = 0. See text for details.

Fig. 6. Transport results versus �̂ for ne0 = 3 � 1013=cm3. See text for

details.

Fig. 7. D versus ne0 for �̂ = 0, comparing transport in MHH2 with NHH2.

As in Fig. 5, the analytic theory is shown by curves without symbols.

Fig. 8. Plots of 
na1s = 
bd1s + 

sb
1s and 


bd
1s and 


sb
1s versus �̂, for s = e; i and at

ne0 = 3� 1013.

The point �̂1 where 
na1i = 
na1e is a self{consistent solution for the am-

bipolar �eld Er.

Fig. 9. Plot of 
xs for s = i; e versus �̂, for the same parameters as in Fig. 8.
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Fig. 10. Plot of energy con�nement times �Es for s = i; e, for the same

parameters as in Figs. 8 and 9.

Fig. 11. Plot of 
1s for s = i; e versus �̂, for the same parameters as in Fig. 8,

except at lower density (ne0 = 1013), in order to access the electron root

�̂2, as well as the ion root �̂1 present in Fig. 8.
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